If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+2X-900=0
a = 1; b = 2; c = -900;
Δ = b2-4ac
Δ = 22-4·1·(-900)
Δ = 3604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3604}=\sqrt{4*901}=\sqrt{4}*\sqrt{901}=2\sqrt{901}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{901}}{2*1}=\frac{-2-2\sqrt{901}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{901}}{2*1}=\frac{-2+2\sqrt{901}}{2} $
| 300=50t | | 300=50t+300 | | -6(x+6=3)x+9 | | 3(-2x+8/5-3)+17=20 | | 1.4=8d0.6 | | 3x=6/10 | | 2x+81=931 | | 2x-3=548 | | 65=9-7h | | 3x=548 | | 37=x+39 | | 73=3(2y+5)-2(y-5) | | 11-2x=91 | | 4(x-2)+11-4=3x+3 | | 29=5+4w | | 38=3.15d | | c/2+4=-6 | | 4/45x=-5 | | 4x=426 | | 1/2-7/3y=-3/4 | | x2+7x−34=0 | | 2x=592 | | 58x=592 | | 0.5(y+4)+0.25y=8 | | -10(s-3)=-43 | | 0.5x=500 | | 7x=+24 | | 5u+11=81 | | x=(-2)(3x)+70 | | X=-2·3x+70 | | X=-2x3x+70 | | 4(7x-2)+3(3-5x)-4(3x+5)=-18 |